
演讲人：夏 鑫

澳大利亚蒙纳士大学ARC DECRA Fellow和讲师。研究方向是软件仓库挖掘和软件解析
学。至今发表了169篇期刊和会议论文，其中包括42篇CCF A类期刊和会议长文（包括22
篇TSE，8篇ASE），57篇CCF B类期刊和会议长文。部分论文获得国际会议最佳/杰出论
文奖项，包括4篇ACM SIGSOFT Distinguished Paper Award（ASE 2018和2019，
ICPC 2018和2020），ESEC/FSE 2019 Best Tool Demo Award。此外他担任了MSR和
SANER会议的Steering Committee，多个国际会议的PC (ICSE，ESEC/FSE, ASE等)，
以及参与组织了多个国际会议（ASE 2020，ICSME 2020, SANER 2019等）。更多
信息在https://xin-xia.github.io/

Bridging the Gap Between
AI and Software Engineering

Xin Xia
ARC DECRA Fellow
Monash University
Xin.Xia@monash.edu

X

X

X

SMU
RA (2012-2014)UBC

Postdoc (2016 – 2017)

Zhejiang University,
BSc (2005 – 2009)
Ph.D. (2009 – 2014)
Faculty Mem. (2014 – 2016)

About Myself

X
Monash Univ.
Lecturer (2018-)

•2

Background

63M+ Projects,
23M+ Developers

14M+ Questions,
19M+ Answers

•3

• Software Engineering Data

• Heterogeneous Software Artifacts
Analyzing SE Data is Complex!

• Structure, Execution Trace, CommentsSource Code

• Natural Language, Patch, Time,
Developer

Development
History

• Meta Data, Natural Language, Code,
DiscussionsBug Reports

• Natural Language, Patch, DiscussionsCode Reviews,
Pull Requests

• Natural Language, Code Snippets,
CommentsSoftware Forums

•4

• What Do Software Engineers Do
Software Development is Complex!

Development Activities

1.Coding
2.Design
3.Debugging
4.Software Quality
5.Documentation
6.Program Comprehension
7.Maintenance
8.Project management

•5

•6

Development Activities

1.Coding
2.Design
3.Debugging
4.Software Quality
5.Documentation
6.Learning
7.Program Comprehension
8.Maintenance
9.Project management

Software Engineer

State of AI Today

7

Data Scientist for
AI People

Data in Domain 1

Data in Domain 2

Data in Domain 3

Data in Domain N

…

Intelligent Techniques:

1. Statistical analysis
2. Data Mining
3. Machine Learning
4. Natural Language Processing
5. Deep Learning
…

Gaps Between AI and Software Engineering

Knowledge of
Domains

Knowledge of
Techniques

Data Scientist Low High
Software Engineers High Low

8

9

Data Scientist Software Engineer

My Research

Build automated tools by mining and analyzing the
rich data in software repositories, to handle the

complexity of software development

10

Bug Localization & Repair Software Artifacts Generation

Intelligent Code Recommender

Human-centric SE

Software Bots Empirical SE

Research Topics

• Automatic Generation of Pull Request Descriptions
• API Method Recommendation without Worrying About

the Task-API Knowledge Gap
• Automating Change-Level Self-Admitted Technical

Debt Determination
• Chatbot4QR: Interactive Query Refinement for

Technical Question Retrieval
• VT-Revolution: Interactive Programming Video Tutorial

Authoring and Watching System

•11

Example Research

Automatic Generation of Pull Request Descriptions

Liu, Xia, et al. ASE 2019

Deep Learning

Example Research 1

Pull Requests

ACM SIGSOFT Distinguished Paper Award

•12

The Pull-Based Development

Central
Repo

Personal
Repo

Fork/Clone

Make Changes

Changes

Pull

Pull Request

Accept & Merge Close / Ignore

Pull Request

•13

Pull Request (PR) Description

PR title

PR Description

Automated PR
Description
Generation

Reduce probability
of being ignored

or rejected

Help assign tags Help identify
related PRs

Sometimes neglected by Devs
34% of 333K PRs

Automatic Generation of PR Descriptions

• A PR often contains multiple commits

• It’s challenging to even summarize a single commit.
– Jiang et al (ASE 2017). Liu, Xia et al (ASE 2018).

•15

Motivating Example

A PR in the Pitest Project
PR Description:
Added an option to ignore failing tests from coverage,
activated from maven plugin
Commit 1:
CM: Added skipFailingTests option from maven plugin
Added Comments: When set will ignore failing tests when
computing coverage. Otherwise, the run will fail. If
parseSurefireConfig is true, will be overridden from surefire
configuration property testFailureIgnore
Commit 2:
CM: Simplified surefire testFailureIgnore value retrieval
Added Comments: N/A

Generating PR Desc by
summarizing commit
msgs and code
comments

Added an option
activated from maven plugin

ignore failing tests from coverage

Added option from maven plugin
Ignore failing tests

coverage

•16

PR Description Generation through Summarization

Approach – Attentional Encoder-Decoder Model

• Our approach is based on the Attentional Encoder-Decoder Model
– A popular and effective model for seq2seq learning problems

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention

•18

Challenge: Out-of-Vocab Words

• Out-of-vocabulary (OOV) words are ubiquitous in software artifacts
due to developer-named identifiers

– e.g., ClosedByInterruptException may not appear in the training set

OOV words can usually be found in the input!

PR Description

A Commit Msg

•19

Solution: Pointer Generator

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention

Generate from
vocabulary

Copy from input

•20

Challenge: Gap between ML Loss and Human Eval

•21

Overview of Our Approach

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention

•22

Dataset

• Collect 333K merged PRs from the top 1K Java
projects on GitHub

• Obtain 41.8K adequate PRs
– Train, Valid, Test: 80%, 10%, 10%

PRs Construct
Target Seq

Empty-Desc
PR Filter

Adequate
PRs

Trivial-Desc
PR Filter

Long-Desc
PR Filter

Construct
Source Seq

Commit
Num Filter

Long-Source
PR Filter

•23

Evaluation

• Evaluation metric: ROUGE
– ROUGE-N (N=1,2) and ROUGE-L
– Widely used to evaluate text summarization

systems

• Baselines
– LeadCM: take the first 25 tokens of the commit

message paragraph as output
• 25: median length of the PRs in our dataset

– LexRank: sort input according to relative sentence
importance, take the first 25 tokens

The Effectiveness of Our Approach

Approach Avg. Length ROUGE-1 ROUGE-2 ROUGE-L

LexRank 24.21 24.11 11.40 22.42

LeadCM 24.37 30.61 17.85 28.89

Attn+PG+RL 19.21 34.15 22.38 32.41
Attn+PG+RL vs.
LexRank -5.00 +41.65% +96.33% +44.52%

Attn+PG+RL vs.
LeadCM -5.16 +11.57% +25.40% 12.18%

Our approach outperforms the two baselines in terms of
ROUGE-1,2 and L.

•25

The Effects of Main Components

Approach Avg. Length ROUGE-1 ROUGE-2 ROUGE-L

Attn 13.95 22.92 12.74 21.95
Attn+PG 14.02 31.27 21.15 29.82
Attn+PG+RL 19.21 34.15 22.38 32.41

PG +0.07 +36.47% +66.10% +35.87%
RL -5.19 +9.21% +5.81% 8.68%

Our approach outperforms Attn and Attn+PG.

The pointer generator and the RL loss are effective and
helpful for boosting the effectiveness of our approach.

API Method Recommendation without Worrying
About the Task-API Knowledge Gap

Qiao, Xia, et al. ASE 2018,
ESEC/FSE 2019 Tool

Example Research 2

•27

ESEC/FSE 2019 Best Tool Demo Award

Background

• Too many APIs in a large library
– Java SE 8 API, 4K classes, 31K methods

• A practical scenario
– I have a programming task
– I don’t even know which API is worth for

investigation

•28

A Straightforward Solution

Query API-Doc

API 1
API 2
API 3

…

API n

Ranking List

•29

Challenge 1: Lexical Gap

• How to initialize all values in an array to false?

• Correct API: Arrays.fill
– Assigns the specified boolean value to each element of

the specified array of booleans.

• Lexical Gap:
– Initialize <-> Assign
– Boolean <-> False

•30

Solution: Word Embedding

JButton

JPanel

JFrame

•31

Challenge 2: Task-API Knowledge Gap

• How to check whether a class exists?

• Wrong API: org.omg.CORBA.Object.is_a (score =

0.669)
– Checks whether this object is an instance of a class that

implements the given interface

• Correct API: java.lang.Class.forName (score = 0.377)
– Returns the Class object associated with the class with

the given string name

•32

How Do Developers Search for APIs?

Query

…
Similar

Questions

API 1
API 2
API 3

…

API n

Candidate
APIs

•33

Overall Framework of Our Approach

API-Related
Questions

Query

Top-K Similar
Questions

Candidate
APIs

Similarity
Scores

•34

Ranking List
of APIs

Code Snippets from SO Posts

Title of Similar Questions

Official API description

Results

Similarity Scores between Query and API

• SimSO: Based on StackOverflow posts

• SimDoc: Based on API documentation
– Calculating text sim between query and API description
– The formula is based on Ye et al.’s work in ICSE 2016

Ye, Xin, et al. "From word embeddings to document similarities for improved information retrieval in software engineering." Proceedings of the 38th
international conference on software engineering. ACM, 2016.

•35

Text sim between query
and question title

An Example of API Summary

• Query: Run linux command in java code
• Top-1 API: java.lang.Runtime.exec
• Doc: Executes the specified string command in a

separate process
• Similar Questions

– 1. Run cmd commands through java
– 2. use cmd commands in java program
– 3. Unable to execute Unix command through Java code

• Code Snippets
– 1. Process p = Runtime.getRuntime().exec(command);
– 2. Runtime.exec(-whatever cmd command you need to execute-)

•36

Data Collection

1.3 Million Java
Questions

126K API-Related
Questions

Text
Corpus

Knowledge
Base

1K Questions

API contained in
accepted answerScore >= 5

469 Questions 413 Questions
for Testing

Remove unqualified
questions

Further
checking

4K Classes
31K Methods

•37

Baselines

• RACK (Rahman et al., SANER 2016)
– Using SO posts to build a keyword-API mapping database
– Only support class-level
– Published a dataset (150 questions from Java tutorial sites)

• DeepAPI (Gu et al., FSE 2016)
– Based on deep neural network (seq2seq)
– Training with annotated API sequences from code repositories.
– Natural language query -> API sequence

•38

RQ1: Effectiveness of Our Approach

• Class-Level, compared with RACK and DeepAPI
– Our dataset: MRR 0.69 (50%), MAP 0.66 (57%)
– RACK’s dataset: MRR 0.43 (42%), MAP 0.27 (58%)

• Method-Level, compared with DeepAPI
– Our dataset: MRR 0.57 (205%), MAP 0.52 (241%)

•39

RQ2: Effectiveness of Information Sources

Info Source
Class-Level Method-Level

MRR MAP MRR MAP
SO Posts 0.56 0.53 0.52 0.48
Java Doc 0.29 0.27 0.10 0.08

Both 0.69 0.66 0.57 0.52

Improve.SO 24% 25% 9% 9%

Improve.Do
c 141% 149% 491% 559%

•40

RQ3: Time Cost of Our Approach

Approach Model Training
Time

Query Processing
Time

Our Approach 36 minutes 2.8s / query
DeepAPI 240 hours 2.6s / query

RACK unknown 12.8s / query

•41

User Study

• 28 Java developers, 4 groups, 10 questions
– WSO, DeepAPI, Ours-Simple, Ours-Full

• Evaluation Metrics
– Correctness and Completion Time

• Results

Group WSO DeepAPI Ours-Simple Ours-Full

Correctness 0.79 0.87 0.86 0.97 (11%)

Time 84s 65s 60s 43s (28%)

•42

Tool

Automating Change-Level Self-Admitted
Technical Debt Determination

Yan, Xia, et al. TSE 2019

Example Research 3

•44

Technical Debt (TD)

In order to achieve short-term goals, suboptimal solutions are
introduced in a software. This increases effort to maintain the
software in long-term.

Technical Debt Financial Debt

Metaphor

Examples of indicating TD

It’s ok for now
but we’ll refactor
it later!

Todo/Fixme: this
should be fixed
before release.

Don’t worry about
the documentation
for now!

Impact of TD

TD Benefits

• Higher productivity
• Lower cost

TD Costs

• Introducing risk
(debt out of control)

• Increasing interest
(Effort to pay back)

Current release! Don’t underestimate the danger!

How to identify TD in a cost-effective way?

How to identify TD?

Method 1: Identifying TD through source code
metrics or code smells

God class
A class knows too much
or does too much!

Lines Of Code
Number of Methods
Complexity
Cohesion and Coupling

Code rules
Rules which enforce a
specific coding style.

Dollar Signs when naming;
Boolean Get Method Name;
At Least One Constructor;

https://pmd.github.io/

http://www.jdeodorant.org

False positive rate Heavy code analysis tasks

http://www.jdeodorant.org/

How to identify TD?

Method 2: Identifying TD through source
code comments

SATD:

Self-Admitted Technical Debt

Examples: (in Tomcat project)

//FIXME handle

EVT_GET_ALL_SESSIONS later

//TODO: Need some format checking

here!!!

More reliable More lightweight

62 Patterns: todo; fixme;
temporary crutch; this isn’t
very solid; fix this crap;
remove me before production

Identify TD from code comments

[Shihab et al. ICSME 2014]

Manual summarization
NLP; Classification;
[Shihab et al. TSE 2017]

Ensemble learning;
[Huang et al. EMSE 2017]

Automatically identification

Issues remaining unanswered

However, all of the current identification methods are file-level
Issues remaining unanswered:

TD-introducing
change?

Characteristics of TD-
introducing changes?

How/Why the TD
is introduced?

File-level detection cannot describe TD-introducing context.
(e.g., TD related to multiple files)

Our motivation

Can we identify TD at change-level? i.e.,
Can we determine whether a change introduces TD?

Benefits:

Identify TD
just-in-time.

Understand the TD-
introducing context.

Characterizing TD-
introducing

change.

Overview of our approach

Source control
system (Git)

Changes

TD-introducing
Or not Features

(3) Model
training

New Change

Random
Forest
Model

Determination
Results

Model Building Phase Model application Phase

(1) Data
labeling

(2) Feature
extraction

?

Step 1: Checkout all
file versions.

Step 2: Extracting
source code
comments.

Step 4: TD-
introducing change
identification.

Step 3: Identify self-admitted
TD comments
(Shihab et al. TSE2017)

(1) Data labeling

(2) Feature extraction

Three dimensions with 25 features:

Diffusion:
Capture the distribution
of the change
e.g., Size, #Directories,
#Files

History:
Capture the historical
information
e.g., NDEV, EXP,
NUC

Message:
Capture the commit
log
e.g., activity type (bug,
feature)

[Kamei et al. TSE13]

(3) Experimental setup

Dataset:
7 Open source Java,
100,011 Changes
2.7% TD-introducing

Measures:
AUC
Cost-
effectiveness

Validation:
10*10 stratified
cross-validation

Classifier:
Random-
forest

Cost-effectiveness: Recall of TD-introducing changes when using 20%
of the entire effort required to inspect all changes to inspect the top
ranked changes.

Research questions

RQ1: Can we effectively determine the
changes that introduce TD?

RQ2: Which dimension of features are most
important in determining TD-introducing
changes?

Random guess (RG) Text classifiers based on change
message

RQ1: Baselines

Naive Bayes, Naive Bayes
Multinomial and Random Forest

Random determination 10 times
to get the average performance.

Four baselines: RG, NBCM, NBMCM, RFCM

RQ1: Performance of AUC

On average, our model improves four baselines by a
substantial margin, with a statistical significance and large
effect size in most cases.

AUC

Chart1

		Hadoop		Hadoop

		Log4j		Log4j

		Tomcat		Tomcat

		Camel		Camel

		Gerrit		Gerrit

		Ant		Ant

		Jmeter		Jmeter

Random guess

RFCM

Ours

0.73

0.87

0.73

0.81

0.74

0.81

0.72

0.81

0.76

0.76

0.73

0.85

0.67

0.81

Sheet1

				RFCM		Ours

		Hadoop		0.73		0.87

		Log4j		0.73		0.81

		Tomcat		0.74		0.81

		Camel		0.72		0.81

		Gerrit		0.76		0.76

		Ant		0.73		0.85

		Jmeter		0.67		0.81

RQ1: Performance of Cost-effectiveness

On average, our model improves four baselines by a
substantial margin, with a statistical significance and large
effect size in all cases.

Cost-effectiveness

Chart1

		Hadoop		Hadoop

		Log4j		Log4j

		Tomcat		Tomcat

		Camel		Camel

		Gerrit		Gerrit

		Ant		Ant

		Jmeter		Jmeter

RFCM

Ours

0.49

0.87

0.73

0.89

0.42

0.71

0.54

0.88

0.54

0.72

0.42

0.64

0.55

0.93

Sheet1

				RFCM		Ours

		Hadoop		0.49		0.87

		Log4j		0.73		0.89

		Tomcat		0.42		0.71

		Camel		0.54		0.88

		Gerrit		0.54		0.72

		Ant		0.42		0.64

		Jmeter		0.55		0.93

Diffusion History Message All features

AUC Cost-effectiveness

RQ2: Performance of dimensions

Diffusion is the most discriminative dimension.
Using all dimensions of features is better.

Chatbot4QR: Interactive Query Refinement for
Technical Question Retrieval

Zhang, Qiao, Xia, et al. TSE 2020

Example Research 4

•62

Background: Question Retrieval (QR)

•63

A user submits
a query

Stack Overflow
(SO), Google,

Bing, etc.
Top-k retrieved

questions

Quality
?

Relevant
?

The relevance of retrieved questions
greatly relies on the quality of the query!

Two Challenging Issues in QR

•64

It is not always an easy task for users to formulate a
good query. – [SANER’15, TSC’16, ASE’17, MSR’18]

Users may probably have different preferred questions
for a query, depending on their personalized technical
background or contexts.

[MSR’18]: it is common for users to miss some important
technical keywords in queries when performing code search
on Google.

Motivating Example

•65

Are the retrieved
questions desired
by all users?

php,
mysql

php,
oracle

python

Key Ideas of Our Chatbot4QR

•66

KI-1: automatically detect the missing technical
context in a query.

Query

Need to detect:
1. What kinds of technical details are
likely to be missed in the query?
2. What are the most relevant
techniques of each missing type?

“prevent SQL injection”

Detected missing
types of technical
context:
Type1: a programming
language, e.g., php,
python, etc.
Type2: a database,
e.g., mysql, oracle, etc.
Type3: …

Key Ideas of Our Chatbot4QR

•67

KI-2: interactively assist users in refining the query based
on the detected missing technical context using a bot.

User: clarify the
missing technical
details

Bot: ask for each
type of the missing
technical context

User Bot

Clarified technical
context: e.g.,
{ java 8, mysql 2.7,
…}

Chatbot4QR: Approach Overview

•68

Missing Types of
Technical Details

Detection

Initial Top-n Similar
Stack Overflow (SO)
Question Retrieval

Heuristic Clarification
Question (CQ) Generation

and Ranking

Interactive Query
Refinement

Top-k Similar Question
Recommendation

Two steps for
the key idea
“KI-1”

Two steps for
the key idea
“KI-2”

Query

Top-k
Similar

Questions

(1) Initial Top-n Similar Question Retrieval

•69

Lucene:
Efficient
Cannot bridge the
lexical gaps

Word Embedding:
Can bridge the lexical gaps
Inefficient to deal with
large-scale data

A Two-Phase Similar Question Retrieval Method:
1)Retrieve the top-N (e.g., N=10,000) similar SO questions using Lucene
2)Retrieve the top-n (e.g., k=15 << N) similar SO questions using a Word
Embedding method (ASE’18)

(2) Missing Types of Technical Details Detection

•70

Query
Initial Top-n
Similar SO
Questions

Identify the types of technical
details that are not specified in the
query but appear in the initial top-
n similar SO questions

Detect
Algorithm

Categorized 1,841 SO tags (with
frequency > 1000) into 20 types, e.g.,
1. Programming language: {python,
java, …}
2. Database: {mysql, oracle, …}

Multiple version-frequency of SO
tags, e.g., java: {‘7’: 2861, ‘8’:
18302, …}

Detection Example

•71

Query: “prevent SQL injection”

Top 3 Similar SO Questions:
Title: How can I prevent SQL injection in PHP?
Tags: php, mysql, sql, security, sql-injection

Title: Are PDO prepared statements to prevent
SQL injection?
Tags: php, security, pdo, sql-injection

Title: How does a PreparedStatement avoid or
prevent SQL injection?
Tags: java, sql, jdbc, prepared-statement, sql-
injection

Detect
Algorithm

Detected types of missing
technical details in the
query:Type Relevant SO Tags
Programming
Language

{ php: [‘7’, ‘5.3’]
java: [‘8’, ‘7’] }

Database { mysql: [‘2’, ‘5.7’] }

Framework { .net: [‘4.0’, ‘3.5’] }

Library { jdbc: [] }

Class { pdo: [] }

(3) Heuristic Clarification Question (CQ)
Generation & Ranking

•72

Three heuristic rules for generating a set of CQs that ask
for three kinds of missing technical details.

Rule 1: Generate a version-related CQ that asks for a
specific version of a technique.

Rule 2: Generate a selection-related CQ that asks for a
specific technique from a candidate set of relevant techniques.

Rule 3: Generate a confirmation-related CQ that asks for
whether using a specific technique.

CQ Generation Example

•73

Detected types of missing
technical details in the
query:Type Relevant SO Tags
Programming
Language

{ php: [‘7’, ‘5.3’]
java: [‘8’, ‘7’] }

Database { mysql: [‘2’, ‘5.7’] }

Framework { .net: [‘4.0’, ‘3.5’] }

Library { jdbc: [] }

Class { pdo: [] }

Ran
k

CQ

1 What programming language, e.g., php or java, does your
problem refer to?

2 Are you using the mysql database? (y/n), or some other
databases.

3 Are you using the jdbc library? (y/n), or some other
libraries.

4 Are you using the .net framework? (y/n), or some other
frameworks

5 Are you using the pdo class? (y/n), or some other classes.

Initially generated CQs:

CQs are ranked by the sum
of similarities of the questions
that contain any SO tags of

the involved type.

(4) Interactive Query Refinement

•74

Interact with the user by asking each generated
CQ, and gather the user’s feedback to the CQs.

Two kinds of the user’s
feedback to CQs:
1. Positive feedback (pfb):

{ java 8, mysql 5.7, jdbc }
2. Negative feedback (nfb):

{ pdo }

(5) Top-k Similar Question Recommendation

•75

Recommend the top-k similar questions by
leveraging the user’s feedback to CQs to adjust
the semantic similarities of the top-N questions.

Two kinds of user’s
feedback to CQs

a weight coefficient
of the feedback

Experimental Setup

• A repository of 188,0269 SO questions

• 50 queries built from the titles of SO questions
outside the repository

• 25 participants

• 6 user studies

• Metrics: Usefulness of CQs, Pre@k, NDCG@k
•76

Whether a CQ can help the
participants recognize some missing

technical details in a query.

Flow of Our Six User Studies

•77

Five Research Questions

•78

RQ1: What a re the proper settings of the parameters
n and η in Cha tbot4QR?

RQ2: How effective can Cha tbot4QR genera te CQs?

RQ3: Can Cha tbot4QR retrieve more relevant SO
questions than the state-of-the-art question retrieval
and query expansion approaches?

RQ4: How efficient is Cha tbot4QR?

RQ5: Can Cha tbot4QR help ob ta in better results
than using Web search engines alone?

RQ1: What are the proper settings of the
parameters n and η in Chatbot4QR?

• We conducted a pilot user study with 5 participants on
10 randomly selected queries.

• Tested settings:
– n: from 5 to 50
– η : from 0.0 to 1.0

• The participants performed:
– Evaluated the usefulness of the CQs
– Gave feedback to useful CQs
– Evaluated the relevance of the recommended top-k SO

questions

•79

RQ1: What are the proper settings of the
parameters n and η in Chatbot4QR?

•80

Proper settings: n = 15, η = 0.2

When n = 15, more than 93%
CQs are useful for a query.

When η = 0.2, Chatbot4QR achieved the optimal
values on most of the Pre@k and NDCG@k metrics.

RQ2: How effective can Chatbot4QR generate CQs?

• We conducted a user study with 20 participants on 50
queries.

• Baseline:
– EVPI [ACL’18]: a neural network based approach to generating

CQs for asking good technical questions in Q&A sites.

• The participants performed:
– Evaluated the usefulness of CQs generated for queries by

Chatbot4QR and EVPI
– Gave feedback to the useful CQs

•81

RQ2: How effective can Chatbot4QR generate CQs?

•82
82

……

On average, Chatbot4QR
generate 5.1 CQs for a query
and 60.8% are useful, which
outperforms EVPI.

The overall performance of
Chatbot4QR and EVPI on 50 queries.

Statistics of the CQs and useful CQs generated
for 50 queries by both approaches.

RQ3: Can Chatbot4QR retrieve more relevant SO
questions than the state-of-the-art question
retrieval and query expansion approaches?

• We conducted a user study with 20 participants on 50
queries.

• Nine Baselines:
– Two popular retrieval methods: Lucene, Word Embedding

(WE) [ASE’18]
– Four query expansion methods: WordNet (WN) [SANER’15],

QECK (a SO based) [TSC’16], TR (a tag recommendation
based) [ASEJ’18], IQR (i.e., our interactive query refinement
method)

•83

RQ3: Can Chatbot4QR retrieve more relevant
SO questions than the state-of-the-art question

retrieval and query expansion approaches?

•84

Chatbot4QR improves the
baselines by at least 54.6%,
and the improvement is
statistically significant for
>=70% participants.

Improvement Degree of
Chatbot4QR over baselines

statistically significant ratio of
the improvement

RQ4: How efficient is Chatbot4QR?

• We recorded the time costs of three representative
approaches: Chatbot4QR, Lucene, and WE.

• For Chatbot4QR, we recorded three kinds of the amount
of times:
– Respond: the amount of time required by Chatbot4QR to

respond to a participant after receiving a query.
– Interaction: the amount of time required by a participant to

interact with Chatbot4QR.
– Recommendation: the amount of time required to produce the

top-k recommended questions.

•85

RQ4: How efficient is Chatbot4QR?

•86

Chatbot4QR takes approximately 1.3s to respond to a user, which
is acceptable for practical uses, as confirmed by the participants.

RQ5: Can Chatbot4QR help obtain better results
than using Web search engines alone?

• We conducted four user studies with 20 participants on
50 queries.

• The participants performed:
– WS: Search the top-k results for queries using Web search

engines (e.g., Google, SO, etc.) before interacting with
Chatbot4QR.

– WS+IQR: Search a new top-k results for queries using Web
search engines after interacting with Chatbot4QR.

– Evaluated the relevance of search results.
– Chose the Best results from three kinds of results: WS,

WS+IQR, and the top-k SO questions retrieved by Chatbot4QR.

•87

RQ5: Can Chatbot4QR help obtain better results
than using Web search engines alone?

•88

Chatbot4QR helps the participants obtain better results than using
the Web search engines alone. The improvement of Best over WS
is by at least 22.4%, and is statistically significant for >= 80%
participants.

Future Work

• Improve Chatbot4QR by mining and incorporating the
knowledge of the relationships among SO tags

• Implement Chatbot4QR as a browser plugin to help
developers in question retrieval from Google, SO, etc.

•89

VT-Revolution: Interactive Programming Video
Tutorial Authoring and Watching System

Bao, Xing, Xia, et al. TSE 2018

Example Research 5

•90

Background

Concept Knowledge
• Knowledge about concepts and APIs in the

task

Procedural Knowledge
• Actions and manipulations that apply conceptual knowledge in

the task

Programming

Programming Tutorials
Video

Text

More
Valuable

Programming videos can serve as a reasonable
approximation of watching a developer’s live coding practice.

Background

Limitations of programming videos

• Lack of a high-level overview of the workflow
• No effective navigation support of workflow and tutorial content
• Inconvenience in linking to supplementary resources

Goal of our work
to make programming video tutorials interactive

• tutorial watchers can freely explore the workflow of a
programming task in the video

• Interact with files, code and program output in the video in a
similar way to the IDE interaction

ActivitySpace: A Framework to Support the
Recording of Interapplication Interactions

93

Low-level Interaction Data

94

•95

Is it possible to use ActivitySpace
to make video tutorial interactive?

Our System: VT-Revolution

VT-Revolution: Tutorial Authoring System

Workflow operation abstraction

Operation
Category

Operation
Type Notion

File
Edit FileOpen<ti, name>

View FileSwitch<ti, origin,
target>

Exception Inspect Inspect<ti-1, ti, exception>

Code Element
Add Add<ti-1, ti, type, info>
Delete Delete<ti-1, ti, type, info>

Text Content Edit Edit<ti-1, ti, file, change>

ASTNode Info

Import statement Package name in the import
statement

Field Declaration Field name, Field datatype name

Variable
Declaration

Variable name, Variable datatype
name

Method Call
Method identifier, Object and its
datatype on which a method is
called

VT-Revolution: Tutorial Watching System

(a) Main (b) Workflow Operation
Timeline

(c) File Content View (d) API Document Linking

8

9
1

2
3 4

5

6

9

10
7

10

Screenshots of our prototype

• Prototype website: http://baolingfeng.xyz:8080/VTRevolution/

http://baolingfeng.xyz:8080/VTRevolution/

Experiment

Research Questions

• RQ1. How well and efficiently does our VT-Revolution system
help developers search relevant information in video tutorials,
compared with developers using the OCR prototype and regular
video player?

• RQ2. Are the participants using VT-Revolution more satisfied with
the learning experience of the video tutorials than those using the
OCR prototype and regular video player?

• RQ3. Which feature(s) of VT-Revolution are most useful?

Experiment Setup

Programming Tutorials

Tutorial Programming Task LOC #File Duration
email A simple program to send email 75 2 08:39
mysql a program to illustrate some

MySql Database operations
175 1 11:06

plugin a Eclipse plugin 309 5 19:19

Baseline tools

• Regular video player
• A prototype with OCRed-text based search and navigation

Experiment Setup

Participants

• 135 professional developers who do not use Java as main programming
language

• Nine comparable groups:
for each tutorial, one experimental group (VT-Revolution) and two control
groups (regular video players and OCR prototype)

Project Year #Dev. Pro. #Participant

A 6 136 C# 40
B 4 90 C# 25
C 4 18 C# 12
D 3 48 C# 15
E 2 10 Python 4
F 4 28 Python 12
G 2 32 C/C++ 12
H 6 68 C/C++ 15

Experiment Setup

Questionnaire Design

Question Category email mysql plugin
API Usage 4 3 4
Workflow 2 3 3
Output 1 2 1
File Content 2 1 3

• API Usage
• In tutorial
• API documentation

• Workflow
• Output
• File Content

Experiment Results

RQ1 – Accuracy of answers to questions

email mysql plugin

Experiment Results

RQ1 – Time of completing questionnaires

email mysql plugin

Experiment Results

RQ2 – Satisfaction

5 12 16 9 3
OCR Prototype

1 5

18 16 9 2 0
Video Player

1 5

1 5

0 0 2 18 25VT-Revolution “The code in text format is more familiar to me than the
code in video. I can copy the code fragment from the video
tutorial using this tool. Very cool! ”

“I can use this tool to navigate the video tutorial, but for
some questions in the questionnaire that require the
context and programming process, that’s not enough. I
have to spend more time to look into the tutorial.”

“Even though I can locate the information in the video, I
often need to watch this fragment of the video repeatedly
so that I can find out what really happen.”

Experiment Results

RQ3 – Usefulness of different features

0 0 4 13 28
0 0 4 12

29

0 0 3
22 20

0 1 10 21 13

Workflow Timeline File Content View

Search & Navigation API Doc Linking

1 5 1 5
“I can know the whole workflow more clearly using this timeline and use it to navigate video more easily.”

“File content view gives me an overview of the program in the video, and it is easy to know the
code change by comparing the code content at two different times.”

“I like the synchronization between the video and the workflow. I can easily find the needed
information and jump to that video part.”

“I do not know the usage of many classes and APIs in the video tutorial since I never write Eclipse
plugin programs. I can understand the video better using API documentation, just like what I can
do in the IDE”

Discussion

Working environment as a tutorial system

Bridging conceptual and procedural knowledge in software
engineering

Making existing video tutorials interactive

• Automatic Generation of Pull Request Descriptions
• API Method Recommendation without Worrying About

the Task-API Knowledge Gap
• Automating Change-Level Self-Admitted Technical

Debt Determination
• Chatbot4QR: Interactive Query Refinement for

Technical Question Retrieval
• VT-Revolution: Interactive Programming Video Tutorial

Authoring and Watching System

•108

Example Research

• Easy over hard: simple solution first

• Strong performance of techniques is not sufficient,
instead a deeper understanding of the domain is
essential

• Results should be presented in a domain-centric
context

•109

Three Challenges

Challenge 1
Easy over hard: simple solution first

•110

Neural-Machine-Translation-Based Commit Message Generation:
How Far Are We?

Liu, Xia et al. ASE 2018ACM SIGSOFT Distinguished Paper Award

Commit Messages

Change

Software Maintenance

Program ComprehensionDocumented by Used for

Time pressure

Neglect

Automated Commit Message
Generation!
• Assist in writing high-quality messages

• Replace empty messages

Generate

Assist

Developer

Commit Message

Lack of direct motivation

•111

NMT-Based Commit Message Generation

• Recently, Jiang et al. proposed an approach, which uses a
Neural Machine Translation (NMT) algorithm to generate one-
sentence commit messages from diffs. [Jiang et al. ASE 2017]

Attentional
Encoder-Decoder Model

A New Diff Commit Message

•112

Evaluation of NMT

• Jiang et al. evaluated NMT using the BLEU-4 score:
– an accuracy measure that is widely used to evaluate machine

translation systems

Model Task BLEU-4

NMT diff -> commit msg 31.92

Model Task BLEU-4

Transformer1
En -> Fr 41.0

En -> De 28.4

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.

•113

However …

• Jiang et al. did not investigate the reasons behind NMT’s good
performance.

• NMT is complicated and slow!
– Attentional RNN encoder-decoder model
– 38 hours for training on a GPU

RQ1: Why does NMT perform so well?

RQ2: Can a simpler and faster approach outperform
NMT?

•114

RQ1: Why does NMT perform so well?

•115

Analyze NMT Messages

• NMT messages: commit messages generated by NMT

200 Test Commits
Randomly select 200
commits from Jiang et
al.'s test set

Manually Analyze
Good Messages

Human Evaluation
• Scores range from 0-7
• Pick out NMT messages of

score of 6 or 7 (good
messages)

•116

Noisy Messages

• (37%) of the reference messages of these good messages
are noisy.

• Two types of noisy messages:

Bot Message Trivial Message

liferay-continuous-integration

Automatically generated by other dev
tools

Contains little and redundant information

•117

The Impact of Noisy Commits

• Identify Noisy Messages in Jiang et al.’s Dataset

• Train and test NMT on the cleaned dataset.
Dataset BLEU-4
JIANG 31.92
Cleaned 14.19

Performance declines by a large amount!
•118

Dataset Bot Trivial Total
Training 12.6% 3.1% 15.6%
Validation 13.4% 2.9% 16.3%
Test 12.8% 3.2% 16.0%

Noisy messages are
common in Jiang et al.'s
dataset!

RQ2 : Can a simpler and faster approach
outperform NMT?

•119

Another Finding of Our Analysis

• For nearly every (70/71) good message, we can find out
one or more similar training commits:

A Test Commit A Similar Training Commit

NMT seems no better than
a nearest neighbor recommender

•120

Nearest Neighbor Generator (NNGen)

A New Diff

Training Set

• Cosine similarity

NN Finder Nearest Neighbor

find output

Commit Message

NNGen

•121

Automatic Evaluation & Time Costs

Dataset Approach BLEU-4

JIANG
NMT 31.92

NNGen 38.55

Cleaned
NMT 14.19

NNGen 16.42

↑ 21%

↑ 16%

Dataset Approach Device Train Test

JIANG

NMT GTX
1070

38
hours

4.5
mins

NMT GTX
1080

34
hours

17
mins

NNGen CPU N/A 30 secs

Cleaned
NMT GTX

1080
24
hours

13
mins

NNGen CPU N/A 23 secs

• GTX 1070: Nvidia GTX 1070 GPU, time costs reported by Jiang et al.

• GTX 1080: Nvidia GTX 1080 GPU, time costs on our server

• CPU: Intel i5 2.6GHz

•122

• Clean up the data carefully.
– Noisy commits will affect performance.

• Consider simple approaches first.
– Specifically, consider the nearest neighbor algorithm first for

diff-msg “translation” tasks.
– Little effort to understand data, sometimes leads to better

performance

Take-Away Message

•123

Challenge 2

Strong performance of techniques
is not sufficient

•124

Measuring Program Comprehension:
A Large-Scale Field Study with Professionals.

Xia et al. TSE 2018

How Much Time Do Developers Spend on
Program Comprehension Activities?

• Program comprehension is an essential and time-consuming
activity in software maintenance

• Zelkowitz et al. : more than half of a time
• Minelli et al.: 70% of time

125

We want to validate a well-known assumption:
program comprehension is time consuming

126

Software Engineer

Program comprehension activities might
happen across many applications

Issue 1: How to collect interaction
data across multiple applications?

ActivitySpace: A Framework to Support the
Recording of Interapplication Interactions

127

Low-level Interaction Data

128

Issue 2: How to identify time spent on
program comprehension activities?

Psychology: Reaction Time

• Time that elapses between the end of a physical action sequence
(e.g., typing, moving the mouse, etc.) and the beginning of
concrete mental processes (e.g., reflecting, or planning).

129

Data collection and analysis

EventTracker
OS Windows APIs

Accessibility APIs

Mouse Move
Mouse Wheel
Mouse Click
Normal Keystroke
Shortcut Key

<Ctrl+O>
Shortcut Key Tab Item

1

Normal Keystrokes

2 3

(comprehension)

EventLabeler

(Editing)

Developers

Software Applications

…
Session Idle

Period Session Idle
Period Session Idle Period Session

Time-ordered Events

EventSegmentor

<spree> Interval > RT

Code Editor Console Project Explorer

Eclipse
Navigation Bar Web Page

Firefox

Mouse Move and
Mouse Wheel

(navigation)

1 2 3

i n t <space> v a r

Main Findings

Program comprehension takes up ∼58% of developers’ time

Besides IDEs, developers frequently use web browsers and document
editors during program comprehension

Java developers > C# developers

Senior developers < Junior developers

Maintenance projects > new development projects

•131

132

We can stop here, and
conclude the whole study.

But why does it happen? Why do
developers spend so much time
on program comprehension?

Improved Study Process

Data Collection and Analysis

Interview

Observation Study

In-depth Data Analysis

Post-study Survey

•133

Data Scientist

Interview

• Interview 10 participants
• Open-ended questions, e.g., importance, challenges, and

difficulties in program comprehension
• Topic discussion, e.g., impact of different programming

languages and project phases on program comprehension

•134

Observation Study

• Randomly choose 200 sessions which have long program
comprehension times

• Identify the root causes

•135

Long-Duration Program Comprehension Activities

•136

• No comments or insufficient comments
• Meaningless classes/methods/variables names
• Large number of LOC in a class/method
• Inconsistent coding styles
• Navigating inheritance hierarchies
• Query refinement, and browsing a number of search results/links
• Lack of documents, and ambiguous/incomplete document content
• Searching for the relevant documents
• Unfamiliarity with business logic

Post-Study Survey

• Send the results section along with the abstract and introduction
to ten interviewees

• Ask them for feedback about our findings

•137

A Deeper Understanding of the
Domain is Essential

Perform both quantitative and qualitative analysis

•138

Challenge 3

Results should be presented in
a domain-centric context

•139

Supervised vs Unsupervised Models:
A Holistic Look at Effort-Aware Just-in-Time Defect Prediction.

Huang, Xia, Lo. ICSME 2017, EMSE 2018

Just-in-Time (JIT) Defect Prediction

•140

Developer committed
a change to Git

Supervised JIT Defect Prediction

• We extract a number of metrics from the historical changes with
known defective information

• We build a prediction model on these metrics

•141

Unsupervised JIT Defect Prediction Model

• Yang et al. proposed a simple unsupervised defect prediction model
• Simply sort the changes by one metric

– LT: Lines of code in a file before the current change
• These unsupervised models can detect 30% to 74% more defect-

inducing changes than the best supervised model when inspecting
20% LOC

•142
Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. FSE 2016

•143

Advantages of the unsupervised model:

1.Easy to implement and understand
2.No need to label the data
3.Under the same inspection cost (i.e.,
20% LOC), it can find more defects

•144

But why do unsupervised defect
prediction models perform so well?

Cost Effectiveness

• Given a limited budget (e.g., 20% LOC) in a release, how
many bugs one can identify

•145

But none of previous studies report how many changes
we need to inspect when inspecting 20% LOC

Number of Changes to Inspect when Inspecting
20% LOC

•146

Approaches % Bugs % Changes
Supervised 31% 33%

Unsupervised 43% 60%

•147

Do unsupervised models perform
better than supervised models?

Domain-Centric Evaluation Measure

• PCI@20%: Proportion of Changes Inspected when 20% LOC
modified by all changes are inspected

• IFA: Number of Initial False Alarms encountered before we find
the first defect

•148

The lower the values, the better the
performance

Results when Inspecting 20% LOC

•149

Supervised Unsupervised
PCI@20% 0.33 0.60

IFA 4 70

Every evaluation measure has its own bias

• We need to design domain centric evaluation measures
• Understanding why we get strong results is more important than

how to get strong results

•150

Summary

	幻灯片编号 1
	幻灯片编号 2
	Background
	Heterogeneous Software Artifacts�Analyzing SE Data is Complex!�
	What Do Software Engineers Do�Software Development is Complex!
	幻灯片编号 6
	State of AI Today
	Gaps Between AI and Software Engineering
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	Automatic Generation of Pull Request Descriptions
	The Pull-Based Development
	Pull Request (PR) Description
	Automatic Generation of PR Descriptions
	Motivating Example
	PR Description Generation through Summarization
	Approach – Attentional Encoder-Decoder Model
	Challenge: Out-of-Vocab Words
	Solution: Pointer Generator
	Challenge: Gap between ML Loss and Human Eval
	Overview of Our Approach
	Dataset
	Evaluation
	The Effectiveness of Our Approach
	The Effects of Main Components
	API Method Recommendation without Worrying About the Task-API Knowledge Gap
	Background
	A Straightforward Solution
	Challenge 1: Lexical Gap
	Solution: Word Embedding
	Challenge 2: Task-API Knowledge Gap
	How Do Developers Search for APIs?
	Overall Framework of Our Approach
	Similarity Scores between Query and API
	An Example of API Summary
	Data Collection
	Baselines
	RQ1: Effectiveness of Our Approach
	RQ2: Effectiveness of Information Sources
	RQ3: Time Cost of Our Approach
	User Study
	幻灯片编号 43
	Automating Change-Level Self-Admitted �Technical Debt Determination
	幻灯片编号 45
	幻灯片编号 46
	Impact of TD
	How to identify TD?
	How to identify TD?
	Identify TD from code comments
	Issues remaining unanswered
	Our motivation
	Overview of our approach
	(1) Data labeling
	(2) Feature extraction
	(3) Experimental setup
	Research questions
	RQ1: Baselines
	RQ1: Performance of AUC
	RQ1: Performance of Cost-effectiveness
	RQ2: Performance of dimensions
	Chatbot4QR: Interactive Query Refinement for Technical Question Retrieval
	Background: Question Retrieval (QR)
	Two Challenging Issues in QR
	Motivating Example
	Key Ideas of Our Chatbot4QR
	Key Ideas of Our Chatbot4QR
	Chatbot4QR: Approach Overview
	(1) Initial Top-n Similar Question Retrieval
	(2) Missing Types of Technical Details Detection
	Detection Example
	(3) Heuristic Clarification Question (CQ) Generation & Ranking
	CQ Generation Example
	(4) Interactive Query Refinement
	(5) Top-k Similar Question Recommendation
	Experimental Setup
	Flow of Our Six User Studies
	Five Research Questions
	RQ1: What are the proper settings of the parameters n and η in Chatbot4QR?
	RQ1: What are the proper settings of the parameters n and η in Chatbot4QR?
	RQ2: How effective can Chatbot4QR generate CQs?
	RQ2: How effective can Chatbot4QR generate CQs?
	RQ3: Can Chatbot4QR retrieve more relevant SO questions than the state-of-the-art question retrieval and query expansion approaches?
	RQ3: Can Chatbot4QR retrieve more relevant SO questions than the state-of-the-art question retrieval and query expansion approaches?
	RQ4: How efficient is Chatbot4QR?
	RQ4: How efficient is Chatbot4QR?
	RQ5: Can Chatbot4QR help obtain better results than using Web search engines alone?
	RQ5: Can Chatbot4QR help obtain better results than using Web search engines alone?
	Future Work
	VT-Revolution: Interactive Programming Video Tutorial Authoring and Watching System
	幻灯片编号 91
	幻灯片编号 92
	ActivitySpace: A Framework to Support the Recording of Interapplication Interactions
	Low-level Interaction Data
	幻灯片编号 95
	幻灯片编号 96
	幻灯片编号 97
	幻灯片编号 98
	幻灯片编号 99
	幻灯片编号 100
	幻灯片编号 101
	幻灯片编号 102
	幻灯片编号 103
	幻灯片编号 104
	幻灯片编号 105
	幻灯片编号 106
	幻灯片编号 107
	幻灯片编号 108
	幻灯片编号 109
	Challenge 1�Easy over hard: simple solution first
	Commit Messages
	NMT-Based Commit Message Generation
	Evaluation of NMT
	However …
	幻灯片编号 115
	Analyze NMT Messages
	Noisy Messages
	The Impact of Noisy Commits
	幻灯片编号 119
	Another Finding of Our Analysis
	Nearest Neighbor Generator (NNGen)
	Automatic Evaluation & Time Costs
	Take-Away Message
	Challenge 2��Strong performance of techniques �is not sufficient
	How Much Time Do Developers Spend on Program Comprehension Activities?
	幻灯片编号 126
	ActivitySpace: A Framework to Support the Recording of Interapplication Interactions
	Low-level Interaction Data
	Psychology: Reaction Time
	幻灯片编号 130
	Main Findings
	幻灯片编号 132
	Improved Study Process
	Interview
	Observation Study
	Long-Duration Program Comprehension Activities
	Post-Study Survey
	A Deeper Understanding of the Domain is Essential
	Challenge 3 ��Results should be presented in �a domain-centric context
	Just-in-Time (JIT) Defect Prediction
	Supervised JIT Defect Prediction
	Unsupervised JIT Defect Prediction Model
	幻灯片编号 143
	幻灯片编号 144
	Cost Effectiveness
	Number of Changes to Inspect when Inspecting 20% LOC
	幻灯片编号 147
	Domain-Centric Evaluation Measure
	Results when Inspecting 20% LOC
	Every evaluation measure has its own bias
	幻灯片编号 151

