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Background

63M+ Projects, 
23M+ Developers

14M+ Questions, 
19M+ Answers

•3

• Software Engineering Data



• Heterogeneous Software Artifacts
Analyzing SE Data is Complex!

• Structure, Execution Trace,  CommentsSource Code

• Natural Language, Patch, Time, 
Developer

Development 
History

• Meta Data, Natural Language, Code, 
DiscussionsBug Reports

• Natural Language, Patch, DiscussionsCode Reviews, 
Pull Requests

• Natural Language, Code Snippets, 
CommentsSoftware Forums
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• What Do Software Engineers Do
Software Development is Complex!

Development Activities

1.Coding
2.Design
3.Debugging
4.Software Quality
5.Documentation
6.Program Comprehension
7.Maintenance
8.Project management
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Development Activities

1.Coding
2.Design
3.Debugging
4.Software Quality
5.Documentation
6.Learning
7.Program Comprehension
8.Maintenance
9.Project management

Software Engineer



State of AI Today

7

Data Scientist for 
AI People

Data in Domain 1

Data in Domain 2

Data in Domain 3

Data in Domain N

…

Intelligent Techniques:

1. Statistical analysis
2. Data Mining
3. Machine Learning
4. Natural Language Processing
5. Deep Learning
…



Gaps Between AI and Software Engineering

Knowledge of 
Domains

Knowledge of 
Techniques

Data Scientist Low High
Software Engineers High Low
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Data Scientist Software Engineer

My Research

Build automated tools by mining and analyzing the 
rich data in software repositories, to handle the 

complexity of software development
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Bug Localization & Repair Software Artifacts Generation

Intelligent Code Recommender

Human-centric SE

Software Bots Empirical SE

Research Topics



• Automatic Generation of Pull Request Descriptions
• API Method Recommendation without Worrying About 

the Task-API Knowledge Gap
• Automating Change-Level Self-Admitted Technical 

Debt Determination
• Chatbot4QR: Interactive Query Refinement for 

Technical Question Retrieval
• VT-Revolution: Interactive Programming Video Tutorial 

Authoring and Watching System 

•11

Example Research



Automatic Generation of Pull Request Descriptions

Liu, Xia, et al. ASE 2019

Deep Learning

Example Research 1

Pull Requests

ACM SIGSOFT Distinguished Paper Award    
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The Pull-Based Development

Central
Repo

Personal
Repo

Fork/Clone

Make Changes

Changes

Pull

Pull Request

Accept & Merge Close / Ignore

Pull Request
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Pull Request (PR) Description

PR title

PR Description

Automated PR
Description
Generation

Reduce probability
of being ignored

or rejected

Help assign tags Help identify
related PRs

Sometimes neglected by Devs
34% of 333K PRs



Automatic Generation of PR Descriptions

• A PR often contains multiple commits

• It’s challenging to even summarize a single commit.
– Jiang et al (ASE 2017). Liu, Xia et al (ASE 2018).
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Motivating Example

A PR in the Pitest Project
PR Description:
Added an option to ignore failing tests from coverage, 
activated from maven plugin
Commit 1:
CM: Added skipFailingTests option from maven plugin 
Added Comments: When set will ignore failing tests when 
computing coverage. Otherwise, the run will fail. If 
parseSurefireConfig is true, will be overridden from surefire 
configuration property testFailureIgnore
Commit 2:
CM: Simplified surefire testFailureIgnore value retrieval 
Added Comments: N/A

Generating PR Desc by
summarizing commit
msgs and code
comments

Added an option
activated from maven plugin

ignore failing tests from coverage

Added option from maven plugin
Ignore failing tests

coverage

•16



PR Description Generation through Summarization



Approach – Attentional Encoder-Decoder Model

• Our approach is based on the Attentional Encoder-Decoder Model
– A popular and effective model for seq2seq learning problems

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention

•18



Challenge: Out-of-Vocab Words

• Out-of-vocabulary (OOV) words are ubiquitous in software artifacts 
due to developer-named identifiers

– e.g., ClosedByInterruptException may not appear in the training set

OOV words can usually be found in the input!

PR Description

A Commit Msg

•19



Solution: Pointer Generator

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention

Generate from
vocabulary

Copy from input

•20



Challenge: Gap between ML Loss and Human Eval

•21



Overview of Our Approach

Shared Embedding Layer

RNN RNN RNN RNN

Linear + Tanh + Softmax

RNN RNN

Linear + Softmax

Attention
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Dataset

• Collect 333K merged PRs from the top 1K Java
projects on GitHub

• Obtain 41.8K adequate PRs
– Train, Valid, Test: 80%, 10%, 10%

PRs Construct
Target Seq

Empty-Desc
PR Filter

Adequate
PRs

Trivial-Desc
PR Filter

Long-Desc
PR Filter

Construct
Source Seq

Commit
Num Filter

Long-Source
PR Filter

•23



Evaluation

• Evaluation metric: ROUGE
– ROUGE-N (N=1,2) and ROUGE-L
– Widely used to evaluate text summarization

systems

• Baselines
– LeadCM: take the first 25 tokens of the commit

message paragraph as output
• 25: median length of the PRs in our dataset

– LexRank: sort input according to relative sentence
importance, take the first 25 tokens



The Effectiveness of Our Approach

Approach Avg. Length ROUGE-1 ROUGE-2 ROUGE-L

LexRank 24.21 24.11 11.40 22.42

LeadCM 24.37 30.61 17.85 28.89

Attn+PG+RL 19.21 34.15 22.38 32.41
Attn+PG+RL vs.
LexRank -5.00 +41.65% +96.33% +44.52%

Attn+PG+RL vs.
LeadCM -5.16 +11.57% +25.40% 12.18%

Our approach outperforms the two baselines in terms of 
ROUGE-1,2 and L.
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The Effects of Main Components

Approach Avg. Length ROUGE-1 ROUGE-2 ROUGE-L

Attn 13.95 22.92 12.74 21.95
Attn+PG 14.02 31.27 21.15 29.82
Attn+PG+RL 19.21 34.15 22.38 32.41

PG +0.07 +36.47% +66.10% +35.87%
RL -5.19 +9.21% +5.81% 8.68%

Our approach outperforms Attn and Attn+PG. 

The pointer generator and the RL loss are effective and 
helpful for boosting the effectiveness of our approach.



API Method Recommendation without Worrying 
About the Task-API Knowledge Gap 

Qiao, Xia, et al. ASE 2018, 
ESEC/FSE 2019 Tool

Example Research 2

•27

ESEC/FSE 2019 Best Tool Demo Award



Background

• Too many APIs in a large library
– Java SE 8 API, 4K classes, 31K methods

• A practical scenario 
– I have a programming task
– I don’t even know which API is worth for 

investigation
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A Straightforward Solution

Query API-Doc

API 1
API 2
API 3

…

API n

Ranking List

•29



Challenge 1: Lexical Gap

• How to initialize all values in an array to false?

• Correct API: Arrays.fill
– Assigns the specified boolean value to each element of 

the specified array of booleans.

• Lexical Gap:
– Initialize <-> Assign
– Boolean <-> False

•30



Solution: Word Embedding 

JButton

JPanel

JFrame

•31



Challenge 2: Task-API Knowledge Gap

• How to check whether a class exists?

• Wrong API: org.omg.CORBA.Object.is_a (score = 

0.669)
– Checks whether this object is an instance of a class that 

implements the given interface

• Correct API: java.lang.Class.forName (score = 0.377)
– Returns the Class object associated with the class with 

the given string name

•32



How Do Developers Search for APIs?

Query

…
Similar 

Questions

API 1
API 2
API 3

…

API n

Candidate 
APIs

•33



Overall Framework of Our Approach

API-Related 
Questions

Query

Top-K Similar 
Questions

Candidate 
APIs

Similarity 
Scores

•34

Ranking List 
of APIs

Code Snippets from SO Posts

Title of Similar Questions

Official API description

Results



Similarity Scores between Query and API

• SimSO: Based on StackOverflow posts

• SimDoc: Based on API documentation
– Calculating text sim between query and API description
– The formula is based on Ye et al.’s work in ICSE 2016

Ye, Xin, et al. "From word embeddings to document similarities for improved information retrieval in software engineering." Proceedings of the 38th 
international conference on software engineering. ACM, 2016.

•35

Text sim between query
and question title



An Example of API Summary

• Query: Run linux command in java code
• Top-1 API: java.lang.Runtime.exec
• Doc: Executes the specified string command in a 

separate process
• Similar Questions

– 1. Run cmd commands through java
– 2. use cmd commands in java program
– 3. Unable to execute Unix command through Java code

• Code Snippets
– 1. Process p = Runtime.getRuntime().exec(command); 
– 2. Runtime.exec( -whatever cmd command you need to execute- ) 
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Data Collection

1.3 Million Java 
Questions

126K API-Related 
Questions

Text 
Corpus

Knowledge 
Base

1K Questions

API contained in 
accepted answerScore >= 5

469 Questions 413 Questions 
for Testing

Remove unqualified 
questions

Further 
checking

4K Classes
31K Methods
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Baselines

• RACK (Rahman et al., SANER 2016)
– Using SO posts to build a keyword-API mapping database
– Only support class-level 
– Published a dataset (150 questions from Java tutorial sites)

• DeepAPI (Gu et al., FSE 2016)
– Based on deep neural network (seq2seq)
– Training with annotated API sequences from code repositories.
– Natural language query -> API sequence

•38



RQ1: Effectiveness of Our Approach

• Class-Level, compared with RACK and DeepAPI
– Our dataset: MRR 0.69 (50%), MAP 0.66 (57%)
– RACK’s dataset: MRR 0.43 (42%), MAP 0.27 (58%)

• Method-Level, compared with DeepAPI
– Our dataset: MRR 0.57 (205%), MAP 0.52 (241%)

•39



RQ2: Effectiveness of Information Sources

Info Source
Class-Level Method-Level

MRR MAP MRR MAP
SO Posts 0.56 0.53 0.52 0.48
Java Doc 0.29 0.27 0.10 0.08

Both 0.69 0.66 0.57 0.52

Improve.SO 24% 25% 9% 9%

Improve.Do
c 141% 149% 491% 559%
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RQ3: Time Cost of Our Approach

Approach Model Training 
Time

Query Processing 
Time

Our Approach 36 minutes 2.8s / query
DeepAPI 240 hours 2.6s / query

RACK unknown 12.8s / query

•41



User Study

• 28 Java developers, 4 groups, 10 questions
– WSO, DeepAPI, Ours-Simple, Ours-Full

• Evaluation Metrics
– Correctness and Completion Time

• Results

Group WSO DeepAPI Ours-Simple Ours-Full

Correctness 0.79 0.87 0.86 0.97 (11%)

Time 84s 65s 60s 43s (28%)
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Tool



Automating Change-Level Self-Admitted 
Technical Debt Determination

Yan, Xia, et al. TSE 2019

Example Research 3
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Technical Debt (TD)

In order to achieve short-term goals, suboptimal solutions are
introduced in a software. This increases effort to maintain the
software in long-term.

Technical Debt Financial Debt 

Metaphor



Examples of indicating TD

It’s ok for now 
but we’ll refactor 
it later! 

Todo/Fixme: this 
should be fixed 
before release.

Don’t worry about 
the documentation 
for now!



Impact of TD

TD Benefits

• Higher productivity
• Lower cost

TD Costs

• Introducing risk
(debt out of control)

• Increasing interest
(Effort to pay back)

Current release! Don’t underestimate the danger!

How to identify TD in a cost-effective way?



How to identify TD?

Method 1: Identifying TD through source code 
metrics or code smells

God class
A class knows too much 
or does too much!

Lines Of Code 
Number of Methods 
Complexity
Cohesion and Coupling

Code rules
Rules which enforce a 
specific coding style.

Dollar Signs when naming;
Boolean Get Method Name;
At Least One Constructor;

https://pmd.github.io/

http://www.jdeodorant.org

False positive rate Heavy code analysis tasks

http://www.jdeodorant.org/


How to identify TD?

Method 2: Identifying TD through source 
code comments

SATD: 

Self-Admitted Technical Debt 

Examples: (in Tomcat project)

//FIXME handle 

EVT_GET_ALL_SESSIONS later

//TODO: Need some format checking 

here!!! 

More reliable More lightweight



62 Patterns: todo;  fixme; 
temporary crutch;  this isn’t 
very solid; fix this crap;  
remove me before production

Identify TD from code comments

[Shihab et al. ICSME 2014]

Manual summarization 
NLP; Classification; 
[Shihab et al. TSE 2017]

Ensemble learning; 
[Huang et al. EMSE 2017]

Automatically identification



Issues remaining unanswered

However, all of the current identification methods are file-level 
Issues remaining unanswered: 

TD-introducing 
change?

Characteristics of TD-
introducing changes?

How/Why the TD 
is introduced?

File-level detection cannot describe TD-introducing context.
(e.g., TD related to multiple files)



Our motivation

Can we identify TD at change-level? i.e., 
Can we determine whether a change introduces TD?

Benefits:

Identify TD 
just-in-time.

Understand the TD-
introducing context.

Characterizing TD-
introducing 

change.



Overview of our approach

Source control 
system (Git)

Changes

TD-introducing 
Or not Features

(3) Model 
training

New Change

Random 
Forest 
Model

Determination 
Results

Model Building Phase Model application Phase

(1) Data 
labeling

(2) Feature 
extraction

?



Step 1: Checkout all 
file versions. 

Step 2: Extracting 
source code 
comments.

Step 4: TD-
introducing change 
identification.

Step 3: Identify self-admitted 
TD comments 
(Shihab et al. TSE2017)

(1) Data labeling



(2) Feature extraction

Three dimensions with 25 features:

Diffusion:
Capture the distribution 
of the change
e.g., Size, #Directories, 
#Files

History: 
Capture the historical 
information
e.g., NDEV, EXP,
NUC

Message: 
Capture the commit 
log
e.g., activity type (bug, 
feature)

[Kamei et al. TSE13]



(3) Experimental setup

Dataset:
7 Open source Java, 
100,011 Changes
2.7% TD-introducing

Measures:
AUC
Cost-
effectiveness

Validation:
10*10 stratified 
cross-validation

Classifier:
Random-
forest

Cost-effectiveness: Recall of TD-introducing changes when using 20% 
of the entire effort required to inspect all changes to inspect the top 
ranked changes.



Research questions

RQ1: Can we effectively determine the 
changes that introduce TD?

RQ2: Which dimension of features are most 
important in determining TD-introducing 
changes?



Random guess (RG) Text classifiers based on change 
message 

RQ1: Baselines

Naive Bayes, Naive Bayes 
Multinomial and Random Forest 

Random determination 10 times 
to get the average performance.

Four baselines: RG, NBCM, NBMCM, RFCM



RQ1: Performance of AUC

On average, our model improves four baselines by a
substantial margin, with a statistical significance and large
effect size in most cases.

AUC


Chart1

		Hadoop		Hadoop

		Log4j		Log4j

		Tomcat		Tomcat

		Camel		Camel

		Gerrit		Gerrit

		Ant		Ant

		Jmeter		Jmeter



Random guess

RFCM

Ours

0.73

0.87

0.73

0.81

0.74

0.81

0.72

0.81

0.76

0.76

0.73

0.85

0.67

0.81



Sheet1

				RFCM		Ours

		Hadoop		0.73		0.87

		Log4j		0.73		0.81

		Tomcat		0.74		0.81

		Camel		0.72		0.81

		Gerrit		0.76		0.76

		Ant		0.73		0.85

		Jmeter		0.67		0.81







RQ1: Performance of Cost-effectiveness

On average, our model improves four baselines by a
substantial margin, with a statistical significance and large
effect size in all cases.

Cost-effectiveness


Chart1

		Hadoop		Hadoop

		Log4j		Log4j

		Tomcat		Tomcat

		Camel		Camel

		Gerrit		Gerrit

		Ant		Ant

		Jmeter		Jmeter



RFCM

Ours

0.49

0.87

0.73

0.89

0.42

0.71

0.54

0.88

0.54

0.72

0.42

0.64

0.55

0.93



Sheet1

				RFCM		Ours

		Hadoop		0.49		0.87

		Log4j		0.73		0.89

		Tomcat		0.42		0.71

		Camel		0.54		0.88

		Gerrit		0.54		0.72

		Ant		0.42		0.64

		Jmeter		0.55		0.93







Diffusion History Message All features

AUC Cost-effectiveness

RQ2: Performance of dimensions

Diffusion is the most discriminative dimension.
Using all dimensions of features is better.



Chatbot4QR: Interactive Query Refinement for 
Technical Question Retrieval

Zhang, Qiao, Xia, et al. TSE 2020

Example Research 4 
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Background: Question Retrieval (QR)

•63

A user submits 
a query

Stack Overflow 
(SO), Google, 

Bing, etc.
Top-k retrieved 

questions

Quality
?

Relevant
?

The relevance of retrieved questions 
greatly relies on the quality of the query!



Two Challenging Issues in QR

•64

It is not always an easy task for users to formulate a 
good query. – [SANER’15, TSC’16, ASE’17, MSR’18]

Users may probably have different preferred questions 
for a query, depending on their personalized technical 
background or contexts.

[MSR’18]: it is common for users to miss some important 
technical keywords in queries when performing code search 
on Google.



Motivating Example

•65

Are the retrieved 
questions desired 
by all users? 

php, 
mysql

php,
oracle

python



Key Ideas of Our Chatbot4QR

•66

KI-1: automatically detect the missing technical 
context in a query.

Query

Need to detect:
1. What kinds of technical details are 
likely to be missed in the query?
2. What are the most relevant 
techniques of each missing type?

“prevent SQL injection”

Detected missing 
types of technical 
context:
Type1: a programming 
language, e.g., php, 
python, etc.
Type2: a database, 
e.g., mysql, oracle, etc.
Type3: …



Key Ideas of Our Chatbot4QR

•67

KI-2: interactively assist users in refining the query based 
on the detected missing technical context using a bot.

User: clarify the 
missing technical 
details

Bot: ask for each 
type of the missing 
technical context

User Bot

Clarified technical 
context: e.g., 
{ java 8, mysql 2.7, 
…}



Chatbot4QR: Approach Overview

•68

Missing Types of 
Technical Details 

Detection

Initial Top-n Similar 
Stack Overflow (SO) 
Question Retrieval

Heuristic Clarification 
Question (CQ) Generation 

and Ranking

Interactive Query 
Refinement

Top-k Similar Question 
Recommendation

Two steps for 
the key idea 
“KI-1”

Two steps for 
the key idea 
“KI-2”

Query

Top-k 
Similar 

Questions



(1) Initial Top-n Similar Question Retrieval

•69

Lucene:
Efficient
Cannot bridge the
lexical gaps 

Word Embedding:
Can bridge the lexical gaps
Inefficient to deal with 
large-scale data

A Two-Phase Similar Question Retrieval Method:
1)Retrieve the top-N (e.g., N=10,000) similar SO questions using Lucene
2)Retrieve the top-n (e.g., k=15 << N) similar SO questions using a Word 
Embedding method (ASE’18)



(2) Missing Types of Technical Details Detection

•70

Query
Initial Top-n
Similar SO 
Questions

Identify the types of technical 
details that are not specified in the 
query but appear in the initial top-
n similar SO questions

Detect 
Algorithm

Categorized 1,841 SO tags (with 
frequency > 1000) into 20 types, e.g., 
1. Programming language: {python, 
java, …}
2. Database: {mysql, oracle, …}

Multiple version-frequency of SO 
tags, e.g., java: {‘7’: 2861, ‘8’: 
18302, …}



Detection Example
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Query: “prevent SQL injection”

Top 3 Similar SO Questions:
Title: How can I prevent SQL injection in PHP? 
Tags:  php, mysql, sql, security, sql-injection
---------------------------------------------------------------
Title: Are PDO prepared statements to prevent 
SQL injection?
Tags: php, security, pdo, sql-injection
---------------------------------------------------------------
Title: How does a PreparedStatement avoid or
prevent SQL injection?
Tags: java, sql, jdbc, prepared-statement, sql-
injection

Detect 
Algorithm

Detected types of missing 
technical details in the 
query:Type Relevant SO Tags
Programming
Language

{ php: [‘7’, ‘5.3’] 
java: [‘8’, ‘7’] }

Database { mysql: [‘2’, ‘5.7’] }

Framework { .net: [‘4.0’, ‘3.5’] }

Library { jdbc: [] }

Class { pdo: [] }



(3) Heuristic Clarification Question (CQ) 
Generation & Ranking

•72

Three heuristic rules for generating a set of CQs that ask 
for three kinds of missing technical details. 

Rule 1: Generate a version-related CQ that asks for a 
specific version of a technique.

Rule 2: Generate a selection-related CQ that asks for a 
specific technique from a candidate set of relevant techniques.

Rule 3: Generate a confirmation-related CQ that asks for 
whether using a specific technique.



CQ Generation Example
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Detected types of missing 
technical details in the 
query:Type Relevant SO Tags
Programming
Language

{ php: [‘7’, ‘5.3’] 
java: [‘8’, ‘7’] }

Database { mysql: [‘2’, ‘5.7’] }

Framework { .net: [‘4.0’, ‘3.5’] }

Library { jdbc: [] }

Class { pdo: [] }

Ran
k

CQ

1 What programming language, e.g., php or java, does your 
problem refer to?

2 Are you using the mysql database? (y/n), or some other 
databases.

3 Are you using the jdbc library? (y/n), or some other 
libraries.

4 Are you using the .net framework? (y/n), or some other 
frameworks

5 Are you using the pdo class? (y/n), or some other classes.

Initially generated CQs:

CQs are ranked by the sum 
of similarities of the questions 
that contain any SO tags of 

the involved type.



(4) Interactive Query Refinement

•74

Interact with the user by asking each generated 
CQ, and gather the user’s feedback to the CQs.

Two kinds of the user’s 
feedback to CQs:
1. Positive feedback (pfb): 

{ java 8, mysql 5.7, jdbc }
2. Negative feedback (nfb): 

{ pdo }



(5) Top-k Similar Question Recommendation

•75

Recommend the top-k similar questions by 
leveraging the user’s feedback to CQs to adjust 
the semantic similarities of the top-N questions.

Two kinds of user’s 
feedback to CQs

a weight coefficient 
of the feedback



Experimental Setup

• A repository of 188,0269 SO questions

• 50 queries built from the titles of SO questions 
outside the repository

• 25 participants

• 6 user studies

• Metrics: Usefulness of CQs, Pre@k, NDCG@k
•76

Whether a CQ can help the 
participants recognize some missing 

technical details in a query.



Flow of Our Six User Studies
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Five Research Questions

•78

RQ1: What a re the proper settings of the parameters 
n and η in Cha tbot4QR?

RQ2: How effective can Cha tbot4QR genera te CQs? 

RQ3: Can Cha tbot4QR retrieve more relevant SO 
questions than the state-of-the-art question retrieval 
and query expansion approaches?

RQ4: How efficient is Cha tbot4QR? 

RQ5: Can Cha tbot4QR help ob ta in better results 
than using Web search engines alone? 



RQ1: What are the proper settings of the 
parameters n and η in Chatbot4QR?

• We conducted a pilot user study with 5 participants on 
10 randomly selected queries.

• Tested settings: 
– n: from 5 to 50
– η : from 0.0 to 1.0

• The participants performed:
– Evaluated the usefulness of the CQs
– Gave feedback to useful CQs
– Evaluated the relevance of the recommended top-k SO 

questions
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RQ1: What are the proper settings of the 
parameters n and η in Chatbot4QR?

•80

Proper settings: n = 15, η = 0.2

When n = 15, more than 93% 
CQs are useful for a query.

When η = 0.2, Chatbot4QR achieved the optimal
values on most of the Pre@k and NDCG@k metrics.



RQ2: How effective can Chatbot4QR generate CQs? 

• We conducted a user study with 20 participants on 50 
queries.

• Baseline:
– EVPI [ACL’18]: a neural network based approach to  generating 

CQs for asking good technical questions in Q&A sites.

• The participants performed:
– Evaluated the usefulness of CQs generated for queries by 

Chatbot4QR and EVPI
– Gave feedback to the useful CQs

•81



RQ2: How effective can Chatbot4QR generate CQs? 

•82
82

……

On average, Chatbot4QR 
generate 5.1 CQs for a query 
and 60.8% are useful, which 
outperforms EVPI.

The overall performance of 
Chatbot4QR and EVPI on 50 queries.

Statistics of the CQs and useful CQs generated 
for 50 queries by both approaches.



RQ3: Can Chatbot4QR retrieve more relevant SO 
questions than the state-of-the-art question 
retrieval and query expansion approaches?

• We conducted a user study with 20 participants on 50 
queries.

• Nine Baselines:
– Two popular retrieval methods: Lucene, Word Embedding 

(WE) [ASE’18]
– Four query expansion methods: WordNet (WN) [SANER’15], 

QECK (a SO based) [TSC’16], TR (a tag recommendation 
based) [ASEJ’18], IQR (i.e., our interactive query refinement 
method)
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RQ3: Can Chatbot4QR retrieve more relevant 
SO questions than the state-of-the-art question 

retrieval and query expansion approaches?

•84

Chatbot4QR improves the 
baselines by at least 54.6%, 
and the improvement is 
statistically significant for 
>=70% participants.

Improvement Degree of 
Chatbot4QR over baselines

statistically significant ratio of 
the improvement 



RQ4: How efficient is Chatbot4QR?

• We recorded the time costs of three representative 
approaches: Chatbot4QR, Lucene, and WE.

• For Chatbot4QR, we recorded three kinds of the amount 
of times:
– Respond: the amount of time required by Chatbot4QR to 

respond to a participant after receiving a query.
– Interaction: the amount of time required by a participant to 

interact with Chatbot4QR.
– Recommendation: the amount of time required to produce the 

top-k recommended questions.
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RQ4: How efficient is Chatbot4QR?

•86

Chatbot4QR takes approximately 1.3s to respond to a user, which 
is acceptable for practical uses, as confirmed by the participants.



RQ5: Can Chatbot4QR help obtain better results 
than using Web search engines alone? 

• We conducted four user studies with 20 participants on 
50 queries.

• The participants performed:
– WS: Search the top-k results for queries using Web search 

engines (e.g., Google, SO, etc.) before interacting with 
Chatbot4QR.

– WS+IQR: Search a new top-k results for queries using Web 
search engines after interacting with Chatbot4QR.

– Evaluated the relevance of search results.
– Chose the Best results from three kinds of results: WS, 

WS+IQR, and the top-k SO questions retrieved by Chatbot4QR.
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RQ5: Can Chatbot4QR help obtain better results 
than using Web search engines alone? 

•88

Chatbot4QR helps the participants obtain better results than using
the Web search engines alone. The improvement of Best over WS
is by at least 22.4%, and is statistically significant for >= 80%
participants.



Future Work

• Improve Chatbot4QR by mining and incorporating the 
knowledge of the relationships among SO tags

• Implement Chatbot4QR as a browser plugin to help 
developers in question retrieval from Google, SO, etc.
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VT-Revolution: Interactive Programming Video 
Tutorial Authoring and Watching System 

Bao, Xing, Xia, et al. TSE 2018

Example Research 5
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Background

Concept Knowledge
• Knowledge about concepts and APIs in the 

task

Procedural Knowledge
• Actions and manipulations that apply conceptual knowledge in 

the task 

Programming

Programming Tutorials
Video

Text

More 
Valuable

Programming videos can serve as a reasonable 
approximation of watching  a developer’s live coding practice.



Background

Limitations of programming videos

• Lack of a high-level overview of the workflow 
• No effective navigation support of workflow and tutorial content
• Inconvenience in linking to supplementary resources

Goal of our work
to make programming video tutorials interactive 

• tutorial watchers can freely explore the workflow of a 
programming task in the video

• Interact with files, code and program output in the video in a 
similar way to the IDE interaction 



ActivitySpace: A  Framework to Support the 
Recording of Interapplication Interactions

93



Low-level Interaction Data
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•95

Is it possible to use ActivitySpace 
to make video tutorial interactive? 



Our System: VT-Revolution



VT-Revolution: Tutorial Authoring System 

Workflow operation abstraction

Operation 
Category

Operation 
Type Notion

File
Edit FileOpen<ti, name>

View FileSwitch<ti, origin, 
target>

Exception Inspect Inspect<ti-1, ti, exception>

Code Element
Add Add<ti-1, ti, type, info>
Delete Delete<ti-1, ti, type, info>

Text Content Edit Edit<ti-1, ti, file, change>

ASTNode Info

Import statement Package name in the import 
statement

Field Declaration Field name, Field datatype name

Variable 
Declaration

Variable name, Variable datatype 
name

Method Call
Method identifier, Object and its 
datatype on which a method is 
called



VT-Revolution: Tutorial Watching System 

(a) Main (b) Workflow Operation 
Timeline

(c) File Content View (d) API Document Linking

8

9
1

2
3 4

5

6

9

10
7

10

Screenshots of our prototype 

• Prototype website: http://baolingfeng.xyz:8080/VTRevolution/

http://baolingfeng.xyz:8080/VTRevolution/


Experiment

Research Questions

• RQ1. How well and efficiently does our VT-Revolution system 
help developers search relevant information in video tutorials, 
compared with developers using the OCR prototype and regular 
video player?

• RQ2. Are the participants using VT-Revolution more satisfied with 
the learning experience of the video tutorials than those using the 
OCR prototype and regular video player?

• RQ3. Which feature(s) of VT-Revolution are most useful?  



Experiment Setup

Programming Tutorials

Tutorial Programming Task LOC #File Duration
email A simple program to send email 75 2 08:39
mysql a program to illustrate some 

MySql Database operations
175 1 11:06

plugin a Eclipse plugin 309 5 19:19

Baseline tools

• Regular video player
• A prototype with OCRed-text based search and navigation



Experiment Setup

Participants

• 135 professional developers who do not use Java as main programming 
language

• Nine comparable groups: 
for each tutorial, one experimental group (VT-Revolution) and two control 
groups (regular video players and OCR prototype) 

Project Year #Dev. Pro. #Participant

A 6 136 C# 40
B 4 90 C# 25
C 4 18 C# 12
D 3 48 C# 15
E 2 10 Python 4
F 4 28 Python 12
G 2 32 C/C++ 12
H 6 68 C/C++ 15



Experiment Setup

Questionnaire Design 

Question Category email mysql plugin
API Usage 4 3 4
Workflow 2 3 3
Output 1 2 1
File Content 2 1 3

• API Usage
• In tutorial
• API documentation

• Workflow
• Output
• File Content



Experiment Results

RQ1 – Accuracy of answers to questions

email mysql plugin



Experiment Results

RQ1 – Time of completing questionnaires

email mysql plugin



Experiment Results

RQ2 – Satisfaction

5 12 16 9 3
OCR Prototype

1 5

18 16 9 2 0
Video Player

1 5

1 5

0 0 2 18 25VT-Revolution “The code in text format is more familiar to me than the 
code in video. I can copy the code fragment from the video 
tutorial using this tool. Very cool! ”

“I can use this tool to navigate the video tutorial, but for 
some questions in the questionnaire that require the 
context and programming process, that’s not enough. I 
have to spend more time to look into the tutorial.” 

“Even though I can locate the information in the video, I 
often need to watch this fragment of the video repeatedly 
so that I can find out what really happen.”



Experiment Results

RQ3 – Usefulness of different features

0 0 4 13 28
0 0 4 12

29

0 0 3
22 20

0 1 10 21 13

Workflow Timeline File Content View

Search & Navigation API Doc Linking

1 5 1 5
“I can know the whole workflow more clearly using this timeline and use it to navigate video more easily.”

“File content view gives me an overview of the program in the video, and it is easy to know the 
code change by comparing the code content at two different times.” 

“I like the synchronization between the video and the workflow. I can easily find the needed 
information and jump to that video part.”

“I do not know the usage of many classes and APIs in the video tutorial since I never write Eclipse 
plugin programs. I can understand the video better using API documentation, just like what I can 
do in the IDE”



Discussion

Working environment as a tutorial system 

Bridging conceptual and procedural knowledge in software 
engineering 

Making existing video tutorials interactive



• Automatic Generation of Pull Request Descriptions
• API Method Recommendation without Worrying About 

the Task-API Knowledge Gap
• Automating Change-Level Self-Admitted Technical 

Debt Determination
• Chatbot4QR: Interactive Query Refinement for 

Technical Question Retrieval
• VT-Revolution: Interactive Programming Video Tutorial 

Authoring and Watching System 

•108

Example Research



• Easy over hard: simple solution first

• Strong performance of techniques is not sufficient,
instead a deeper understanding of the domain is 
essential

• Results should be presented in a domain-centric 
context

•109

Three Challenges 



Challenge 1
Easy over hard: simple solution first

•110

Neural-Machine-Translation-Based Commit Message Generation: 
How Far Are We?

Liu, Xia et al. ASE 2018ACM SIGSOFT Distinguished Paper Award



Commit Messages

Change

Software Maintenance

Program ComprehensionDocumented by Used for

Time pressure

Neglect

Automated Commit Message 
Generation!
• Assist in writing high-quality messages

• Replace empty messages

Generate

Assist

Developer

Commit Message

Lack of direct motivation

•111



NMT-Based Commit Message Generation

• Recently, Jiang et al. proposed an approach, which uses a 
Neural Machine Translation (NMT) algorithm to generate one-
sentence commit messages from diffs. [Jiang et al. ASE 2017]

Attentional
Encoder-Decoder Model

A New Diff Commit Message

•112



Evaluation of NMT

• Jiang et al. evaluated NMT using the BLEU-4 score:
– an accuracy measure that is widely used to evaluate machine 

translation systems

Model Task BLEU-4 

NMT diff -> commit msg 31.92

Model Task BLEU-4 

Transformer1
En -> Fr 41.0

En -> De 28.4

[1] Vaswani, Ashish, et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.
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However …

• Jiang et al. did not investigate the reasons behind NMT’s good 
performance.

• NMT is complicated and slow!
– Attentional RNN encoder-decoder model
– 38 hours for training on a GPU

RQ1: Why does NMT perform so well?

RQ2: Can a simpler and faster approach outperform 
NMT?

•114



RQ1: Why does NMT perform so well?
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Analyze NMT Messages

• NMT messages: commit messages generated by NMT

200 Test Commits
Randomly select 200 
commits from Jiang et 
al.'s test set

Manually Analyze 
Good Messages

Human Evaluation
• Scores range from 0-7
• Pick out NMT messages of

score of 6 or 7 (good
messages)
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Noisy Messages

• (37%) of the reference messages of these good messages
are noisy.

• Two types of noisy messages:

Bot Message Trivial Message

liferay-continuous-integration

Automatically generated by other dev
tools

Contains little and redundant information

•117



The Impact of Noisy Commits

• Identify Noisy Messages in Jiang et al.’s Dataset

• Train and test NMT on the cleaned dataset.
Dataset BLEU-4 
JIANG 31.92
Cleaned 14.19

Performance declines by a large amount!
•118

Dataset Bot Trivial Total
Training 12.6% 3.1% 15.6%
Validation 13.4% 2.9% 16.3%
Test 12.8% 3.2% 16.0%

Noisy messages are 
common in Jiang et al.'s 
dataset!



RQ2 : Can a simpler and faster approach 
outperform NMT?
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Another Finding of Our Analysis

• For nearly every (70/71) good message, we can find out 
one or more similar training commits:

A Test Commit A Similar Training Commit

NMT seems no better than
a nearest neighbor recommender

•120



Nearest Neighbor Generator (NNGen)

A New Diff

Training Set

• Cosine similarity

NN Finder Nearest Neighbor

find output

Commit Message

NNGen
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Automatic Evaluation & Time Costs

Dataset Approach BLEU-4

JIANG
NMT 31.92

NNGen 38.55

Cleaned
NMT 14.19

NNGen 16.42

↑ 21%

↑ 16%

Dataset Approach Device Train Test

JIANG

NMT GTX 
1070

38 
hours

4.5 
mins

NMT GTX 
1080

34 
hours

17 
mins

NNGen CPU N/A 30 secs

Cleaned
NMT GTX 

1080
24 
hours

13 
mins

NNGen CPU N/A 23 secs

• GTX 1070: Nvidia GTX 1070 GPU, time costs reported by Jiang et al.

• GTX 1080: Nvidia GTX 1080 GPU, time costs on our server

• CPU: Intel i5 2.6GHz
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• Clean up the data carefully.
– Noisy commits will affect performance.

• Consider simple approaches first.
– Specifically, consider the nearest neighbor algorithm first for

diff-msg “translation” tasks.
– Little effort to understand data, sometimes leads to better

performance

Take-Away Message

•123



Challenge 2

Strong performance of techniques 
is not sufficient

•124

Measuring Program Comprehension: 
A Large-Scale Field Study with Professionals. 

Xia et al. TSE 2018



How Much Time Do Developers Spend on 
Program Comprehension Activities?

• Program comprehension is an essential and time-consuming 
activity in software maintenance 

• Zelkowitz et al. : more than half of a time
• Minelli et al.: 70% of time

125

We want to validate a well-known assumption:
program comprehension is time consuming
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Software Engineer

Program comprehension activities might 
happen across many applications

Issue 1: How to collect interaction 
data across multiple applications?



ActivitySpace: A  Framework to Support the 
Recording of Interapplication Interactions
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Low-level Interaction Data

128

Issue 2: How to identify time spent on 
program comprehension activities?



Psychology: Reaction Time

• Time that elapses between the end of a physical action sequence 
(e.g., typing, moving the mouse, etc.) and the beginning of 
concrete mental processes (e.g., reflecting, or planning). 
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Data collection and analysis

EventTracker
OS Windows APIs

Accessibility APIs

Mouse Move
Mouse Wheel
Mouse Click
Normal Keystroke
Shortcut Key

<Ctrl+O>
Shortcut Key Tab Item

1

Normal Keystrokes

2 3

(comprehension)

EventLabeler

(Editing)

Developers

Software Applications

…
Session Idle 

Period Session Idle 
Period Session Idle Period Session 

Time-ordered Events

EventSegmentor

<spree> Interval > RT

Code Editor Console Project Explorer

Eclipse
Navigation Bar Web Page

Firefox

Mouse Move and 
Mouse Wheel

(navigation)

1 2 3

i n t <space> v a r



Main Findings

Program comprehension takes up ∼58% of developers’ time

Besides IDEs, developers frequently use web browsers and document 
editors during program comprehension

Java developers > C# developers

Senior developers < Junior developers

Maintenance projects > new development projects

•131
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We can stop here, and
conclude the whole study. 

But why does it happen? Why do 
developers spend so much time 
on program comprehension? 



Improved Study Process

Data Collection and Analysis

Interview

Observation Study

In-depth Data Analysis

Post-study Survey

•133

Data Scientist



Interview

• Interview 10 participants
• Open-ended questions, e.g., importance, challenges, and 

difficulties in program comprehension
• Topic discussion, e.g., impact of different programming 

languages and project phases on program comprehension
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Observation Study

• Randomly choose 200 sessions which have long program 
comprehension times

• Identify the root causes
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Long-Duration Program Comprehension Activities

•136

• No comments or insufficient comments
• Meaningless classes/methods/variables names 
• Large number of LOC in a class/method
• Inconsistent coding styles 
• Navigating inheritance hierarchies
• Query refinement, and browsing a number of search results/links 
• Lack of documents, and ambiguous/incomplete document content 
• Searching for the relevant documents
• Unfamiliarity with business logic 



Post-Study Survey

• Send the results section along with the abstract and introduction 
to ten interviewees

• Ask them for feedback about our findings

•137



A Deeper Understanding of the 
Domain is Essential

Perform both quantitative and qualitative analysis

•138



Challenge 3

Results should be presented in 
a domain-centric context

•139

Supervised vs Unsupervised Models: 
A Holistic Look at Effort-Aware Just-in-Time Defect Prediction. 

Huang, Xia, Lo. ICSME 2017, EMSE 2018



Just-in-Time (JIT) Defect Prediction 

•140

Developer committed 
a change to Git 



Supervised JIT Defect Prediction

• We extract a number of metrics from the historical changes with 
known defective information

• We build a prediction model on these metrics 
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Unsupervised JIT Defect Prediction Model

• Yang et al. proposed a simple unsupervised defect prediction model
• Simply sort the changes by one metric

– LT: Lines of code in a file before the current change
• These unsupervised models can detect 30% to 74% more defect-

inducing changes than the best supervised model when inspecting 
20% LOC 

•142
Effort-aware just-in-time defect prediction: simple unsupervised 
models could be better than supervised models. FSE 2016
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Advantages of the unsupervised model:

1.Easy to implement and understand
2.No need to label the data
3.Under the same inspection cost (i.e., 
20% LOC), it can find more defects 



•144

But why do unsupervised defect 
prediction models perform so well?



Cost Effectiveness

• Given a limited budget (e.g., 20% LOC) in a release, how 
many bugs one can identify

•145

But none of previous studies report how many changes 
we need to inspect when inspecting 20% LOC



Number of Changes to Inspect when Inspecting 
20% LOC

•146

Approaches % Bugs % Changes
Supervised 31% 33%

Unsupervised 43% 60%
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Do unsupervised models perform 
better than supervised models?



Domain-Centric Evaluation Measure

• PCI@20%: Proportion of Changes Inspected when 20% LOC 
modified by all changes are inspected

• IFA: Number of Initial False Alarms encountered before we find 
the first defect 
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The lower the values, the better the 
performance



Results when Inspecting 20% LOC

•149

Supervised Unsupervised
PCI@20% 0.33 0.60

IFA 4 70



Every evaluation measure has its own bias

• We need to design domain centric evaluation measures
• Understanding why we get strong results is more important than 

how to get strong results

•150



Summary
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